LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **PHYSICS**

FIRST SEMESTER – NOVEMBER 2018

16/17/18PPH1MC02 – ELECTRODYNAMICS

I 1	Date: 27-10-2018 Dept. No. Max. : 100 Marks Sime: 01:00-04:00 Max. : 100 Marks	
PART A		
Ans	Answer ALL questions: $10 \ge 20$ marks	
1.	Two large metal plates, each of area A and charge Q are held a distance d apart what is the	
	electrostatic pressure on the plate?	
2.	Electrostatic energy does not obey superposition principle. Explain.	
3.	A phonograph record of radius R, carrying a uniform surface charge σ , is rotating at a	
	constant angular velocity ω . Find its magnetic dipole moment.	
4.	Determine the constant c such that the vector F = (x+ay)i+(y+bz)j+(x+cz)k will be solenoidal.	
5.	Event A happens at point (X_A =5, Y_A =3, Z_A =0) and at time t_A given by (ct_A =15). Event B occurs at	
	(10, 8, 0) at $ct_B=5$. Both in system S. Find the invariant interval between A & B.	
6.	State Work- Energy Theorem.	
7.	Explain the term retarded potentials.	
8.	Give the Larmor formula for the power radiated by a non-relativistic point charge.	
9.	What are the boundary conditions on E and B for a wave guide?	
10.	What is cut-off frequency with reference to a waveguide?	
PART B		
Ans	wer any FOUR questions: $4 \times 7.5 = 30$ marks	
11.	Find the potential and electric field intensity for the region between two concentric right	
	circular cylinders, where V=0 at r_a =1mm and V=100 V at r_b =20mm	
12.	Calculate the power flow for a plane wave using the Poynting theorem.	
13.	Find the velocity that an electron must be given so that its momentum is $10m_oc$, where m_o is	
	the rest mass. Also find the energy of the electron.	
14.	An infinite straight wire carries a current I(t) = 0 (for t \leq 0) and	
	$I(t) = I_0$ (for t > 0). Find the resulting electric and magnetic fields.	
15.	Show that a coaxial transmission line of inner and outer radius a and b respectively admit	
	waves with $E_z = 0$ and $B_z = 0$.	

State Larmor Formula. (b) Suppose an electron decelerated at a constant rate a from some initial velocity v₀ down to zero. What fraction of its initial kinetic energy is lost to radiation? (assume v₀ << c) (2.5 + 5).

PART C

Answer any **FOUR** questions:

 $4 \ge 12.5 = 50 \text{ marks}$

- 17. Outline the theory of multipole expansion of electrostatic potential in powers of (1/r).
- 18. What is Gauge transformation? Explain in detail Coulomb Gauge and Lorentz Gauge.
- 19. From the Lorentz transformation equations arrive at Einstein velocity addition rule. Calculate the percentage contraction of a rod moving with a velocity 0.8c in the direction inclined 60° to its own length (6.5+6).
- 20. Obtain Leinard-Wiechert potentials for a moving point charge.
- 21. What are waveguides? Obtain expression for the longitudinal component B_z in TE mode of propagation in a rectangular waveguide.
- 22. Prove the uniqueness theorems in electrostatics.

\$\$\$\$\$\$\$